Chapter $18 b$

- Ionic Equilibria: Acids and Bases

Acid-Base Properties of Salts

- Examples of salts that produce neutral solutions:
- $\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
- $\mathrm{KNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$
- $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathbf{S O}_{4}{ }^{2-}(\mathrm{aq})$
- $\mathrm{LiClO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Li}^{+}(\mathrm{aq})+\mathbf{C l O}_{4}^{-}(\mathrm{aq})$
- $\operatorname{KBr}(\mathrm{aq}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathbf{B r}^{-}(\mathrm{aq})$
- Weak conjugates bases of strong acids are produced and do not upset the balance of $\mathrm{H}_{3} \mathrm{O}^{+}$\& OH^{-}in neutral water.

Solvolysis

This reaction process is the most difficult concept in this chapter.

- Solvolysis is the reaction of a substance with the solvent in which it is dissolved.
- Hydrolysis refers to the reaction of a substance with water or its ions.
- Combination of the anion of a weak acid with $\mathrm{H}_{3} \mathrm{O}^{+}$ions from water to form nonionized weak acid molecules.

Acid-Base Properties of Salts

- Soluble salts (ionic compounds) dissolve in water to produce ions.
- In particular, salts that contain group IA metals, NO_{3}^{-}, and NH_{4}^{+}ions usually dissolve to produce ions.
- Some salts dissolve to produce ions that do not change the pH of water.
- These are salts that produce neutral solution.
- Some salts dissolve that produce strong conjugates of acids or bases.
- These are salts that produce either basic or acidic solution.

Acid-Base Properties of Salts

- Examples of salts that produce basic or acidic solutions:
- $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathbf{C O}_{3}{ }^{2-}(\mathrm{aq})$
- $\mathrm{KF}(\mathrm{aq}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathbf{F}^{-}(\mathrm{aq})$
- $\mathrm{NaCH}_{3} \mathrm{COO}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathbf{C H}_{3} \mathbf{C O O}^{-}(\mathrm{aq})$
- $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathbf{N H}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
- $\mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{COO}(\mathrm{aq}) \rightarrow \mathbf{N H}^{+}(\mathrm{aq})+\mathbf{C H}_{3} \mathbf{C O O}^{-}(\mathrm{aq})$
- Strong conjugate bases of weak acids, strong conjugate acids of weak bases or both are produced.
- These strong conjugates react with water and do upset the balance of $\mathrm{H}_{3} \mathrm{O}^{+} \& \mathrm{OH}^{-}$in neutral water.

Solvolysis

- The combination of a weak acid's anion with $\mathrm{H}_{3} \mathrm{O}^{+}$ions, from water, to form nonionized weak acid molecules is a form of hydrolysis.

$$
\begin{aligned}
& \mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftarrows \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \\
& \text { recall } \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}+\mathrm{OH}^{-}
\end{aligned}
$$

Solvolysis

- The reaction of the anion of a weak monoprotic acid with water is commonly represented as:

$$
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows H A+\mathrm{OH}^{-}
$$

Solvolysis

- Remember from Brønsted-Lowry acid-base theory:
- The conjugate base of a strong acid is a very weak base.
- The conjugate base of a weak acid is a stronger base.
- Hydrochloric acid, a typical strong acid, is essentially completely ionized in dilute aqueous solutions.

$$
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\sim 100 \%} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}
$$

Solvolysis

- HF, a weak acid, is only slightly ionized in dilute aqueous solutions.
- Its conjugate base, the F^{-}ion, is a much stronger base than the Cl^{-}ion.
- The F^{-}ions combine with $\mathrm{H}_{3} \mathrm{O}^{+}$ions to form nonionized HF.
- Two competing equilibria are established.

$$
\begin{gathered}
\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{only} \mathrm{slightly}}{\rightleftarrows} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-} \\
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-} \underset{ }{\rightleftarrows} \mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \\
\text { nearly completely }
\end{gathered}
$$

Solvolysis

- Recall that at $25^{\circ} \mathrm{C}$
- in neutral solutions:

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-7} M=\left[\mathrm{OH}^{-}\right]
$$

- in basic solutions:

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<1.0 \times 10^{-7} \mathrm{M} \text { and }\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7} \mathrm{M}
$$

- in acidic solutions:
$\left[\mathrm{OH}^{-}\right]<1.0 \times 10^{-7} \mathrm{M}$ and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>1.0 \times 10^{-7} \mathrm{M}$

Solvolysis

- The conjugate base of HCl , the Cl^{-}ion, is a very weak base.
- The chloride ion is such a weak base that it will not react with the hydronium ion.
$\mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow$ No rxn. in dilute aqueous solutions
- This fact is true for all strong acids and their anions.

Solvolysis

- Dilute aqueous solutions of salts can be produced from the following neutralization reactions :

1. Salts of Strong Bases and Strong Acids (neutral solutions)

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

2. Salts of Strong Bases and Weak Acids (basic solutions) $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCH}_{3} \mathrm{COO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ (l)
3. Salts of Weak Bases and Strong Acids (acidic solutions)

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})
$$

1. Salts of Weak Bases and Weak Acids (depends upon the K_{a} and K_{b} of the individual weal acid and weak base.)

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{~F}(\mathrm{aq})
$$

Salts of Strong Bases and Weak Acids

- Salts made from strong acids and strong soluble bases form neutral aqueous solutions.
- An example is potassium nitrate, KNO_{3}, made from nitric acid and potassium hydroxide.

$$
\begin{aligned}
& \quad \mathrm{KNO}_{3(s)} \xrightarrow{\sim 100 \% \text { in } \mathrm{H}_{2} \mathrm{O}} \underset{\mathrm{~K}_{2}}{\rightleftarrows} \\
& \mathrm{H}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{NO}_{3}^{-}}{\rightleftarrows} \\
& \text { The ions that are in solution } \uparrow_{\mathrm{KOH}} \uparrow_{\mathrm{HNO}_{3}}
\end{aligned}
$$

The KOH and HNO_{3} are present in equal amounts.
There is no reaction to upset $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
Thus the solution is neutral.

Salts of Strong Bases and Weak Acids

$\mathrm{NaClO}_{(s)} \xrightarrow{\sim 100 \% \text { in } \mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}+\mathrm{ClO}^{-}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \quad \longleftrightarrow \mathrm{OH}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Notice ions in solution $\uparrow_{\mathrm{NaOH}} \uparrow_{\mathrm{HClO}}$
Which is the stronger acid or base?

The conjugate base of a weak acid is very strong.

Salts of Strong Bases and Weak Acids

- The equilibrium constant for this reaction, called the hydrolysis constant, is written as: Notice that hydrolysis constant is for the ClO^{-}that reacts with water to produce OH^{-}.

Salts of Strong Bases and Weak Acids

- Salts made from strong soluble bases and weak acids hydrolyze to form basic solutions.
- Anions of weak acids (strong conjugate bases) react with water to form hydroxide ions.
- An example is sodium hypochlorite, NaClO , made from sodium hydroxide and hypochlorous acid.
$\mathrm{NaOH}(\mathrm{aq})+\mathrm{HClO}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{NaClO}(\mathrm{aq})$
- Since NaClO is a soluble salt (group IA metal):

$$
\mathrm{NaClO}(\mathrm{aq}) \xrightarrow{100 \%} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{ClO}^{-}(a q)
$$

Salts of Strong Bases and Weak Acids

$$
\begin{aligned}
& \mathrm{NaClO}_{(s)} \xrightarrow{\sim 100 \% \text { in } \mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}+\mathrm{ClO}^{-} \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{OH}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{ClO}^{-}+\mathrm{H}^{-} \sigma^{+} \longrightarrow \mathrm{HClO}+\mathrm{H} / 2 \mathrm{O}
\end{aligned}
$$

- We can combine these last two equations into one single equation that represents the total reaction.
$\mathrm{ClO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(1) \rightleftarrows \mathrm{HClO}(a q)+\mathrm{OH}^{-}(a q)$
The strong conjugate base reacts with water to produce a basic solution.

Salts of Strong Bases and Weak Acids

- Which can be used to calculate the hydrolysis constant for the hypochlorite ion:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{w}}=K_{a} K_{b} \\
& \mathrm{~K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a} \text { for } \mathrm{HCO}}}=\frac{1 \times 10^{-14}}{3.5 \times 10^{-8}} \\
& \mathrm{~K}_{\mathrm{b}}=\frac{[\mathrm{HClO}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{ClO}^{-}\right]}=2.9 \times 10^{-7}
\end{aligned}
$$

Salts of Strong Bases and Weak Acids

- This same method can be applied to the anion of any weak monoprotic acid.

$$
\begin{gathered}
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HA}+\mathrm{OH}^{-} \\
\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a} \text { for } \mathrm{HA}}}
\end{gathered}
$$

Salts of Strong Bases and Weak Acids

The cyanide ion, CN^{-}, the anion of hydrocyanic acid, HCN . For $\mathrm{HCN}, \mathrm{K}_{\mathrm{a}}=4.0 \times 10^{-10}$.

$$
\begin{gathered}
\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HCN}+\mathrm{OH}^{-} \\
\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HCN}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CN}^{-}\right]}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\text {a for HCN }}} \\
\mathrm{K}_{\mathrm{b}}=\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-10}} 2.5 \times 10^{-5}
\end{gathered}
$$

Salts of Strong Bases and Weak Acids

- Set up the equation for the hydrolysis and the algebraic representations of the equilibrium concentrations.

	ClO^{-}		HC	$+\mathrm{OH}^{-}$
Initial:	0.10 M		$0 M$	0M
Change:	$-x M$		$+x M$	$+x M$
At equil:	(0.10-x		$x M$	$x M$

Salts of Strong Bases and Weak Acids

- Substitute the algebraic expressions into the hydrolysis constant expression.

The simplifying assumption can be made in this case.
$x \ll 0.10$ and $0.10-x \approx 0.10$
The equation reduces to $x^{2}=2.9 \times 10^{-8}$

$$
\begin{aligned}
& x=1.7 \times 10^{-4} M=\left[\mathrm{ClO}^{-}\right]=\left[\mathrm{OH}^{-}\right] \\
\mathrm{pOH}= & -\log \left(1.7 \times 10^{-4}\right) \\
\mathrm{pOH}= & 3.77 \\
\mathrm{pH}= & 14.00-3.77 \\
= & 10.23
\end{aligned}
$$

Salts of Strong Bases and Weak Acids

- If a similar calculation is performed for $0.10 M \mathrm{NaF}$ solution and the results from 0.10 M sodium fluoride and 0.10 M sodium hypochlorite compared, the following table can be constructed.

Solution	\mathbf{K}_{a}	\mathbf{K}_{b}	$[\mathbf{O H}](\boldsymbol{M})$	$\mathbf{p H}$	$\mathbf{\%}$ hydrolysis
NaF	7.2×10^{-4}	1.4×10^{-11}	1.2×10^{-6}	8.08	0.0012
NaClO	3.5×10^{-8}	2.9×10^{-7}	1.7×10^{-4}	10.23	0.17

\qquad

Salts of Weak Bases and Strong Acids

The relatively strong acid, NH_{4}^{+}, reacts with the OH^{-}ion removing it from solution leaving excess $\mathrm{H}_{3} \mathrm{O}^{+}$

$$
\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \rightleftarrows \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

generates excess $\mathrm{H}_{3} \mathrm{O}^{+}$

- The reaction may be more simply represented as:
\qquad

Salts of Weak Bases and Strong Acids

- Which we recognize as:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{w}}=K_{a} K_{b} \\
& \mathrm{~K}_{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}\left(\mathrm{NH}_{3}\right)}} \\
& \mathrm{K}_{\mathrm{a}}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.6 \times 10^{-10}
\end{aligned}
$$

Salts of Weak Bases and Strong Acids

- In its simplest form for this hydrolysis:

$$
\begin{aligned}
& \mathrm{NH}_{4}^{+}(\mathrm{aq}) \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftarrows} \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.6 \times 10^{-10}
\end{aligned}
$$

Salts of Weak Bases and Strong Acids

2. Substitute the algebraic expressions into the hydrolysis constant.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.6 \times 10^{-10} \\
& \mathrm{~K}_{\mathrm{a}}=\frac{(x)(x)}{(0.10-x)}=5.6 \times 10^{-10}
\end{aligned}
$$

The assumption is applicable.
$x \ll 0.10$ thus $0.10-x \approx 0.10$

Salts of Weak Bases and Strong Acids

4. The percent hydrolysis of the ammonium ion in 0.10 M $\mathrm{NH}_{4} \mathrm{Br}$ solution is:

$$
\begin{aligned}
& \% \text { hydrolysis }=\frac{\left[\mathrm{NH}_{4}^{+}\right]_{\text {hydrolized }}}{\left[\mathrm{NH}_{4}^{+}\right]_{\text {original }}} \times 100 \% \\
& \% \text { hydrolysis }=\frac{7.5 \times 10^{-6} \mathrm{M}}{0.10 \mathrm{M}} \times 100 \% \\
& \% \text { hydrolysis }=0.0075 \%
\end{aligned}
$$

Salts of Weak Bases and Weak Acids

- Salts made from weak acids and weak bases can form neutral, acidic or basic aqueous solutions.
- The pH of the solution depends on the relative values of the ionization constant of the weak acids and bases.

1. Salts of weak bases and weak acids for which parent $\mathrm{K}_{\text {base }}=\mathrm{K}_{\text {acid }}$ make neutral solutions.

Salts of Weak Bases and Weak Acids

- The ammonium ion hydrolyzes to produce H^{+}ions. Its hydrolysis constant is:

$$
\begin{aligned}
& \mathrm{NH}_{4}^{+} \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftarrows} \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.6 \times 10^{-10}
\end{aligned}
$$

Salts of Weak Bases and Weak Acids

- Because the hydrolysis constants for both ions are equal, their aqueous solutions are neutral.
- Equal numbers of H^{+}and OH^{-}ions are produced.

A weak acid and base are formed in solution!

Salts of Weak Bases and Weak Acids

- An example is ammonium acetate, $\mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{COO}$, made from aqueous ammonia, NH_{3}, and acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$.
K_{a} for acetic acid $=\mathrm{K}_{\mathrm{b}}$ for ammonia $=1.8 \times 10^{-5}$.

Salts of Weak Bases and Weak Acids

- The acetate ion hydrolyzes to produce OH^{-}ions. Its hydrolysis constant is:

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \\
& \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}=5.6 \times 10^{-10}
\end{aligned}
$$

Salts of Weak Bases and Weak Acids

2. Salts of weak bases and weak acids for which parent $\mathrm{K}_{\text {base }}>\mathrm{K}_{\text {acid }}$ make basic solutions.

- An example is ammonium hypochlorite, $\mathrm{NH}_{4} \mathrm{ClO}$, made from aqueous ammonia, NH_{3}, and hypochlorous acid, HClO .

$$
\mathrm{K}_{\mathrm{b}} \text { for } \mathrm{NH}_{3}=1.8 \times 10^{-5}>\mathrm{K}_{\mathrm{a}} \text { for } \mathrm{HClO}=3.5 \times 10^{-8}
$$

Salts of Weak Bases and Weak Acids

- The ammonium ion hydrolyzes to produce $\mathrm{H}+$ ions. Its hydrolysis constant is:

$$
\begin{aligned}
& \mathrm{NH}_{4}^{+} \stackrel{\mathrm{H}_{2} \mathrm{O}}{\longleftrightarrow} \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.6 \times 10^{-10}
\end{aligned}
$$

Salts of Weak Bases and Weak Acids
3. Salts of weak bases and weak acids for which parent $\mathrm{K}_{\text {base }}<\mathrm{K}_{\text {acid }}$ make acidic solutions.

- An example is trimethylammonium fluoride, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHF}$, made from trimethylamine, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$, and hydrofluoric acid acid, HF.
K_{b} for $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}=7.4 \times 10^{-5}<\mathrm{K}_{\mathrm{a}}$ for $\mathrm{HF}=7.2 \times 10^{-4}$

Salts of Weak Bases and Weak Acids

- The trimethylammonium ion hydrolyzes to produce H^{+}ions. Its hydrolysis constant is:

$$
\begin{aligned}
& \left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+} \rightleftarrows\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}+\mathrm{H}^{+} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]\left[\mathrm{H}^{+}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}\right]}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b} \text { for }\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}}} \\
& \mathrm{~K}_{\mathrm{a}}=\frac{1.0 \times 10^{-14}}{7.4 \times 10^{-5}}=1.4 \times 10^{-10}
\end{aligned}
$$

Salts of Weak Bases and Weak Acids

- Both the cation, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$, and the anion, F^{-}, hydrolyze.
$\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}\right]^{+} \mathrm{F}^{-} \xrightarrow{\mathrm{H}_{2} \mathrm{O} \sim 100 \%}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}\right]^{+}+\mathrm{F}^{-}$

Salts of Weak Bases and Weak Acids

- The fluoride ion hydrolyzes to produce OH - ions. Its hydrolysis constant is:

$$
\begin{aligned}
& \mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HF}+\mathrm{OH}^{-} \\
& \mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HF}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{F}^{-}\right]}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a} \text { for } \mathrm{HF}}} \\
& \mathrm{~K}_{\mathrm{b}}=\frac{1.0 \times 10^{-14}}{7.2 \times 10^{-4}}=1.4 \times 10^{-11}
\end{aligned}
$$

- Because the K_{a} for $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$ions is one order of magnitude larger than the K_{b} for F^{-}ions, H^{+}ions are produced in excess making the solution acidic.

Salts of Weak Bases and Weak Acids

- Summary of the major points of hydrolysis up to now.

1 The reactions of anions of weak monoprotic acids (from a salt) with water to form free molecular acids and OH^{-}.

$$
\begin{aligned}
& A^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HA}+\mathrm{OH}^{-} \\
& \mathrm{K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}(\mathrm{HA})}}
\end{aligned}
$$

Salts of Weak Bases and Weak Acids

- Aqueous solutions of salts of strong acids and strong bases are neutral.
- Aqueous solutions of salts of strong bases and weak acids are basic.
- Aqueous solutions of salts of weak bases and strong acids are acidic.
- Aqueous solutions of salts of weak bases and weak acids can be neutral, basic or acidic.

The values of K_{a} and K_{b} determine the pH .

Salts of Weak Bases and Weak Acids
2. The reactions of anions of weak bases (from a salt) with water to form free molecular bases and $\mathrm{H}_{3} \mathrm{O}^{+}$.

$$
\begin{aligned}
& \mathrm{BH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{~B}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}(\mathrm{~B})}} \quad(\mathrm{B}=\text { weak base })
\end{aligned}
$$

- Weak aqueous acid-base mixtures are called buffers. They are the subject of Chapter 19.

